Studies on the Active Transport of Calcium in Human Red Cells

نویسندگان

  • Kwang Soo Lee
  • Bak Chang Shin
چکیده

The Ca(++) transport mechanism in the red cell membrane was studied in resealed ghost cells. It was found that the red cell membrane can transport Ca(++) from inside the cell into the medium against great concentration gradient ratios. Tracing the movement of (45)Ca infused inside red cells indicated that over 95% of all Ca(++) in the cells was transported into media in 20 min incubation under the optimum experimental conditions. The influence of temperature on the rate constant of transport indicated an activation energy of 13,500 cal per mole. The optimum pH range of media for the transport was between 7.5 and 8.5. As energy sources, ATP(1), CTP, and UTP were about equally effective, GTP somewhat less effective, and ITP least effective among the nucleotides tested. The Ca(++) transport does not appear to involve exchange of Ca(++) with any monovalent or divalent cations. Also, it is not influenced by oligomycin, sodium azide, or ouabain in high concentrations, which inhibit the Ca(++) transport in mitochondria or in sarcoplasmic reticulum. In these respects, the Ca(++) transport mechanism in the red cell membrane is different from those of mitochondria and the sarcoplasmic reticulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Graphene Quantum Dots on the Osteogenic Differentiation of Stem Cells from Human Endometrial

Background and aim: Cell-therapy is an important science because of using to treatment of critical-sized bone defects. Recent studies in this field suggest that human endometrial derived stem cells can be a great source. On the other hand, graphene and its derivatives, mainly graphene quantum dots (GQDs) have recently attracted much attention as effective factors in differentiating stem cells t...

متن کامل

Comparison of Propolis and Calcium Hydroxide in terms of Mineralization and Cytotoxicity Using Dental Pulp Stem Cells

Objectives: This study aimed to compare the in vitro cytotoxic activity of propolis, a bioactive material made by the honeybee, and calcium hydroxide (CH) and their effect on formation of mineralized nodules by human dental pulp stem cells (HDPSCs). Methods: In this in vitro study, HDPSCs were obtained from the Cellular and Molecular Oral Biology Laboratory of School of Dentistry, Shahid Behesh...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

The potential of human-derived periodontal ligament stem cells to osteogenic differentiation: An In vitro investigation

Background: Periodontal ligament stem cells (PDLSCs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. Materials and Methods: This study examined the effects of dexamethasone (Dex) on human PDLSCs in vitro. PDLSCs obtained from the roots of patient’s teeth were cultured with Dex (0....

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 54  شماره 

صفحات  -

تاریخ انتشار 1969